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1. I never predict anything, and I never will

Figure 1: Paul Gascoigne

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
https://www.youtube.com/watch?v=g0NT6aUwN8c
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2. A common pattern

La Ligue Sénégalaise de FootBall Professionnel 2017-2018

Statistics Numbers

Minimum 0

Maximum 6

Total goals 455

Total matches 210

Average of goals per match 2.16̄

Probability of goal per minute 2.4%

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
http://www.madeinfoot.com/resultats/senegal/ligue-1/saison/2017-2018/journee-1.html
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Goal count Frequency

0 31

1 47

2 53

3 37

4 26

5 9

6 7

Total matches 455
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LaLiga 2018-2019

Statistics Numbers

Minimum 0

Maximum 10

Total goals 982

Total matches 380

Average of goals per match 2.58

Probability of goal per minute 2.87%

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
https://www.dropbox.com/sh/dd36sf7huy60xmk/AACJvhMogN69eoa1o_WXCPX6a?dl=0
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Goal count Frequency

0 28

1 72

2 101

3 84

4 51

5 26

6 11

7 2

8 4

9 1

10 1

Total matches 982
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MLS 2019

Statistics Numbers

Minimum 0

Maximum 9

Total goals 1241

Total matches 408

Average of goals per match 3.04

Probability of goal per minute 3.38%

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
https://www.dropbox.com/sh/nlanazoqzaagwuc/AAAyc10c9VYeuERs9F4x1-FLa?dl=0
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Goal count Frequency

0 19

1 58

2 94

3 91

4 68

5 41

6 22

7 9

8 4

9 2

Total matches 408
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Superliga Argentina 2019

Statistics Numbers

Minimum 0

Maximum 8

Total goals 713

Total matches 325

Average of goals per match 2.19

Probability of goal per minute 2.44%

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
https://www.dropbox.com/sh/d9qnfiy4bdf4gnh/AADUKYjEozhEKwTVcIxgFH_Ea?dl=0
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Goal count Frequency

0 42

1 67

2 91

3 64

4 41

5 14

6 5

7 0

8 1

Total matches 325
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Liga MX Clausura 2016

Statistics Numbers

Minimum 0

Maximum 7

Total goals 431

Total matches 153

Average of goals per match 2.82

Probability of goal per minute 3.13%

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
https://www.dropbox.com/sh/9h8wewm1y4md2r1/AACYrZPjOUmTExAWbcb1pdbKa?dl=0
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Goal count Frequency

0 14

1 20

2 36

3 34

4 23

5 14

6 9

7 3

Total matches 153
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3. The Senegalese, Spanish, American, Argentinian,

and Mexican connection

Definition 3.1. We say that a random variable N has a Binomial distribution with

parameters (n, p) if

P(N = k) =
(

n
k

)
pk(1 − p)n−k (3.1)

for k = 0, 1, ..., n.

So, we take n = 90 “experiments”, and p according to:

Country Senegal Spain USA Argentina Mexico

Probability 2.4% 2.87% 3.38% 2.44% 3.13%

The tables above should give us the idea of counting the goals in a match. For

this purpose, we introduce the following definition.

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
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Definition 3.2. Let 0 ≤ t ≤ 1 be an instant in time, and N(t) be the number of

goals scored until moment t of a football match1. The sequence of random variables

{N(t) : t ≥ 0} is a counting process if it satisfies the following properties:

(i) N(t) ≥ 0,

(ii) N(t) is valued in the integer numbers,

(iii) If s < t, then N(s) ≤ N(t),

(iv) For s < t, N(t)− N(s) is the number of goals scored in the interval ]s; t].

1Here, N(1) refers to the total amount of goals scored during the full length of the match,

and for example N
(

1
90

)
stands for the total amount of goals scored up to the instant right after

the first minuted has passed by.

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
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4. Only 90 chances to score...

Figure 3: What do we do with him?!

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
https://www.youtube.com/watch?v=wRDjwaoUYU4
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Definition 4.1. (See [9, Chapter 1].) We say that a counting process {N(t) : t ≥ 0} is

a Poisson process with intensity/rate λ > 0 if:

(i) N(0) = 0,

(ii) The number of goals scored in different intervals are pairwise independent,

(iii) The distributions of N(t + s)− N(t) for all t ≥ 0 are equal,

(iv) The probability that a single goal is scored in an infinitely small interval of size h

is

lim
h→0

P[N(h) = 1]
h

= λ, (4.1)

(v) The probability that at least two goals are scored in an infinitely small interval of

size h is around 0, i.e.

lim
h→0

P[N(h) ≥ 2]
h

= 0. (4.2)

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
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Figure 4: Si vous ne rigolez pas maintenant, alors vous aurez réussi l’examen

«Je ne suis pas un nerd».

Theorem 4.2. Let Nn(t) be a random variable with Binomial distribution and param-

eters
(

n, λt
n

)
, where λ > 0. Then

lim
n→∞ P(Nn(t) = i) =

(λt)i

i!
e−λt for i=0,1,... (4.3)

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
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The mass function of a Poisson random variable looks like Figure 4. Theo-

rem 4.2 can be found, for instance in [1, p. 204-206], and is often called Poisson’s

limit law. To prove this result, we need the following Lemma.

Lemma 4.3. If i ∈ Z, then

lim
n→∞ n(n − 1) . . . (n − i + 1)

ni = 1.

Proof. Note that

lim
n→∞ n(n − 1) · · · (n − i + 1)

ni = lim
n→∞ n

n
n − 1

n
n − 2

n
· · · n − i + 1

n

= lim
n→∞ 1

(
n
n
−

1
n

)
· · ·
(

n
n
−

i + 1
n

)
= 1.

This proves the result.

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
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Proof of Theorem 4.2. If Nn(t) follows the Binomial law with parameters
(

n, λt
n

)
then,

lim
n→∞ P(Nn(t) = i) = lim

n→∞
(

n
i

)(
λt
n

)i (
1 −

λt
n

)n−i

= lim
n→∞ n!

(n − i)!i!
·
(

λt
n

)i
·
(

1 −
λt
n

)n−i

= lim
n→∞ n(n − 1) · · · (n − i + 1)

i!
(λt)i

ni

(
1 − λt

n

)n

(
1 − λt

n

)i

= e−λt (λt)i

i!
lim

n→∞ n(n − 1) · · · (n − i + 1)
ni .

The last equlity follows from the definition of the exponential function, and

from the fact that lim
n→∞

(
1 − λt

n

)i
= 1. Finally, Lemma 4.3 yields the result.

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
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Proof of Theorem 4.2. If Xn ∼ Binomial
(

n, λ
n

)
then,

lim
n→∞ P(Xn = i) = lim

n→∞
(

n
i

)(
λ

n

)i (
1 −

λ

n

)n−i

= lim
n→∞ n!

(n − i)!i!
·
(

λ

n

)i
·
(

1 −
λ

n

)n−i

= lim
n→∞ n(n − 1) · · · (n − i + 1)

i!
λi

ni

(
1 − λ

n

)n

(
1 − λ

n

)i

= e−λ λi

i!
lim

n→∞ n(n − 1) · · · (n − i + 1)
ni

The last equality follows from the definition of the exponential function, and

from the fact that lim
n→∞

(
1 − λt

n

)i
= 1.. Finally, Lemma 4.3 yields the result.

Using N∞(1), instead of N90(1) (that is, use formula (4.3) au lieu de formula

(3.1)), we obtain the following graphs.

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
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What have we earned? For starters, we have managed to characterize the

whole set of empiric probabilities by a single Poisson parameter (instead of the

couple of Binomial parameters). Moreover, in view of Theorem 4.2, we can

compute the probability that the i-th goal is scored before time t. This is the

spirit behind Definition 4.4, and Theorem 4.5.

Definition 4.4. For a Poisson process, let τ1 be the time elapsed until the first goal

is scored; and τi be the time elapsed between the (i − 1)-th, and the i-th goals, for

i = 2, 3, ... The sequence {τi : i = 1, 2, ...} is called sequence of times of arrival.

Theorem 4.5. (Cf. [3, Theorem 6.8.10].) The random variable τi is such that

P(τi ≤ t) = 1 − e−λt for i = 1, 2, ..., (4.4)

and does not depend on τj for i 6= j and j = 1, 2, ...

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
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Figure 6: The events [τ1 > t] and [N(t) = 0] are equivalent.

Proof. Look at Figure 6 and note that

P(τ1 > t) = P(N(t) = 0)

= e−λt.

Then (4.4) is true for i = 1.

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
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Let [τi|τi−1 = s] be the random variable that represents the time of arrival of

the i-th goal given that the (i − 1)-th goal was scored at time s, for i = 2, 3, ....

Figure 7 shows that the second goal is scored only after time s + t. This fact

implies that P(τ2 > t|τ1 = s) = P(N(s + t)− N(s) = 0|N(s) = 1).

Figure 7: How many goals between s and s + t? The answer is zero.

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
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In general, one can argue that

P(τi > t|τi−1 = s) = P(N(s + t)− N(s) = 0|N(s) ≥ 1)

= P(N(s + t)− N(s) = 0)

= e−λt.

The second equality follows from Definition 4.1(ii), i.e., the property of inde-

pendent increments of the Poisson process. It is obvious that τi meets (4.4) for

i = 1, 2, ...; moreover, by Definition 4.1(ii), we know that τi does not depend on

τj for i 6= j and j = 1, 2, ...

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
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5. Simulating goals

To generate the first n goals and their

times of arrival, we will use Theorem

4.5 and the following result.

Proposition 5.1. (Cf. [8, Chapter 5.1].)

Let U be a uniform random variable on

]0; 1[. For some continuous and invert-

ible distribution function F, the random

variable X := F−1(U) has distribution F.

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
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Proof. Let FX be the distribution function of X = F−1(U). Then

FX(x) = P(X ≤ x)

= P(F−1(U) ≤ x).

The fact that F is a distribution function itself, means that F is monotonic and

non-decreasing. So

FX(x) = P(F−1(U) ≤ x)

= P
[

F
(

F−1(U)
)
≤ F(x)

]
= P [U ≤ F(x)]

= F(x).

The last equality holds because U is a uniform random variable on ]0; 1[.

We use Theorem 4.5, and borrow the following algorithm from [8, Chapter

5.4] to simulate the number of goals.

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
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Algorithm 1: Generation of a Poisson realization
Data: Goal average of a team λ > 0

Result: A simulated number of goals for the team

1 Generate a random number U;

2 N ← 0;

3 p← exp(−λ);

4 F ← p;

5 while U ≥ F do

6 p← λ
p

N+1 ;

7 F ← F + p;

8 N ← N + 1;

9 end

10 return N;

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
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Now we return to the question from Section 1. To make a proper selection

of the goals for and against both teams, we use our information on Atlético de

Madrid and Boca Juniors to compile the following table.

Team Atlético de Madrid Boca Juniors

Matches at home 19 12

Goals for at home 32 22

Goals against at home 10 7

Matches away 19 13

Goals for away 23 20

Goals against away 19 11

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
https://www.dropbox.com/sh/dd36sf7huy60xmk/AACJvhMogN69eoa1o_WXCPX6a?dl=0
https://www.dropbox.com/sh/dd36sf7huy60xmk/AACJvhMogN69eoa1o_WXCPX6a?dl=0
https://www.dropbox.com/sh/d9qnfiy4bdf4gnh/AADUKYjEozhEKwTVcIxgFH_Ea?dl=0
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The mean of the goals scored by

Atlético de Madrid (A) as host was

of 32
19 , whereas Boca Juniors (B) re-

ceived an average of 11
13 as visitors.

This means that it is reasonable to

assume that A will score a mean of

λA = 0.5× 32
19

+ 0.5× 11
13
≈ 1.27

goals in a direct match in Madrid.

Likewise, we assume that

λB = 0.5× 20
13

+ 0.5× 10
19
≈ 1.03.

We feed Algorithm 1 with these parameters to simulate the match, and obtain...

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
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The mean of the goals scored by B

as host was of 22
12 , whereas A re-

ceived an average of 19
19 = 1 as vis-

itors. This means that it is reason-

able to assume that B will score a

mean of

λB = 0.5× 22
12

+ 0.5× 1 ≈ 1.42

goals in a direct match in Buenos

Aires. Likewise, we assume that

λA = 0.5× 23
19

+ 0.5× 7
12
≈ 0.90.

We feed Algorithm 1 with these parameters to simulate the match, and obtain...

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
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6. A game for the crowds

Theorem 6.1. (Weak Law of Large Num-

bers; Golden Theorem; Bernoulli’s Theorem.

See [3, Chapters 7.4 and 7.5], [4, Chapter 8],

[5, Chapter 8.4], [6, Chapter 8] and [7].) Let

I1, I2, ... be a sequence of independent and iden-

tically distributed random variables with com-

mon mean µ; and Īn := I1+···+In
n . Then for any

fixed positive number ε,

lim
n→∞ P

(∣∣ Īn − µ
∣∣ > ε

)
= 0.

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
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Proof of Theorem 6.1. Since ε is fixed, then for any ` > 0, we have `σ
√

n < εn for

all sufficiently large values of n. This yields the equivalence of the events[∣∣ Īn − µ
∣∣ > ε

]
and

[∣∣∣∣nĪn − nµ

σ
√

n

∣∣∣∣ > `

]
,

and so

P
[∣∣ Īn − µ

∣∣ < ε
]
≥ P

[∣∣∣∣nĪn − nµ

σ
√

n

∣∣∣∣ < `

]→ 1√
2π

∫ `
−`

e−
x2
2 dx as n→∞. (6.1)

The right-most part of (6.1) holds by virtue of the Central Limit Theorem (see [4,

Chapter 10.3] and [2, p. 233]). Given any δ > 0 we can first choose ` so large

that the value of the integral above exceeds 1 − δ, then choose n so large that

(6.1) holds. It then follows that

P
[∣∣ Īn − µ

∣∣ < ε
]
> 1 − δ

for all sufficiently large n. This proves the result.

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
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Virtual Champions

We used Theorem 6.1, simulated each tournament 10,000 times, and got:

League 3rd place 2nd place 1st place

Superliga Argentina Boca Juniors River Plate Racing Club

LaLiga Real Madrid Atlético de Barcelona

MLS Atlanta New York Los Angeles

LSFP Teungueth FC ASC Jaraaf Génération Foot

Liga MX Tigres América Cruz Azul

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
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Thank you for your attention!

Contact information

Facultad de Ciencias Actuariales, Universidad Anáhuac México.

Av. Universidad Anáhuac 46, Lomas Anáhuac, CP52786

Naucalpan de Juárez, México.
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