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1. Presentation

In general, references deal with the case of completely observable stochastic

control with a stochastic integral equation of the form

x(t) = x0 +

∫ t

0
b(x(s), θ(s), u(s))ds +

∫ t

0
σ(x(s), θ(s))dW(s),

and a continuous-time Markov chain θ(t) with finite state space

E = {1, 2, . . . , N}, whose transition rule is as follows:

P(θ(t + ∆t) = j|θ(t) = i, (x(s), θ(s)), s ≤ t) = qij∆t + o(∆t), i 6= j; (1.1)

for t ≥ 0, θ(0) = θ0, and
∑N

j=1 qij = 0, where Q = (qij)i,j∈E is the rate matrix of

the process θ.
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We work with the particular class of controlled diffusion processes on Rn

with infinite horizon studied in [1, 2], whose dynamics has the form

dx(t) = b(x(t), θ(t), u(t), α(t))dt + σ(x(t), θ(t))dW(t); x(0) = x0, (1.2)

along with the transition rule (1.1); where b and σ are given functions, but

the drift coefficient b depends on an unknown and possibly non-observable

parameter α.

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos


Home Page

Title Page

Contents

JJ II

J I

Page 6 of 29

Go Back

Full Screen

Close

Quit

2. Optimal pollution control with average payoff
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Consider the pollution process (cf. [5, 7]) defined by the controlled diffusion

dx(t) = [u(t)− α(t)x(t)]dt + kdW(t), x(0) = x > 0, (2.1)

where
• u(t) is the consumption flow at

time t ≥ 0,

• 0 ≤ u(t) ≤ η in “Bad state”,

• η is a consumption restriction im-

posed by local government,

• η ≤ u(t) ≤ γ in “Good state”,

• γ is a consumption restriction im-

posed by worldwide protocols.
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2.1. Dynamics of the “Doomsday pendulum”

We readily know that, for i = Bad, Good, the limiting probabilities are given by:

P∗(Bad) := lim
t→∞ Pi,Bad(t) =

µ

λ + µ
, (2.2)

P∗(Good) := lim
t→∞ Pi,Good(t) =

λ

λ + µ
. (2.3)
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2.2. Three comparisons

Euler-Maruyama’s method (cf. [3])
A random telegraphic signal

A telegram Empiric corroboration of (2.2)-(2.3)
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2.3. Utility vs. Disutility

Social welfare: r(x, i, u) := F(u)− D(x, i),

• where F ∈ C2[0;∞[ is the social utility of the consumption u, and

• D ∈ C([0;∞[×{Good, Bad}) is the social disutility of the pollution stock x.
F ′ ≥ 0, F ′′ ≤ 0,

F ′(∞) = F(0) = 0, F ′(0+) = F(∞) =∞,

D(x, i) ≥ 0 convex and locally Lipschitz for i ∈ {Good, Bad}.

We look for a consumption policy u that maximizes the worst long-run average

welfare J(x, i, f , α) when the unknown process takes the value α(t) ∈ [0; a]:

J(x, i, u, α) := lim inf
T→∞ 1

T
E

u,α
x,i

[∫T

0
[F(u)− D(x, i)]dt

]
. (2.4)
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Algorithm 1: Itô’s integral
Data: x0, Pendulum0, λ, µ, dt, T <∞, λ, µ, k

Result: The integral inside the expectation operator (2.4)

1 x ← x0; Pendulum← Pendulum0;

2 r ← F(u(x, Pendulum))− D(x, Pendulum); I ← r; j← 0;

3 while j ≤ T do

4 Pendulum← telegraph(Pendulum, j, λ, µ); dW ← N−1(0, dt);

5 x ← x + (u(x, Pendulum)− α(x) · x)dt + k · dW;

6 r ← F(u(x, Pendulum))− D(x, Pendulum); I ← I + r;

7 j← j + dt;

8 end

9 I ← I · dt;

10 return I;
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Algorithm 2: Monte Carlo algorithm
Data: x0, Pendulum0, λ, µ, dt, T <∞, λ, µ, k, N

Result: An approximate of (2.4), that is, the average of N iterations of

Algorithm 1 divided by T

1 MC← 0;

2 for i← 0 to N do

3 MC← (i−1)·MC+Integral(x0,Pendulum0,λ,µ,dt,T,λ,µ,k)
i

4 end

5 return MC
T ;
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2.4. Standard Dynamic Programming tools

The infinitesimal generator of (2.1) for a function ν ∈ C2(R× {Good, Bad}) is

Lu,αν(x, Bad) = (u − αx)ν ′(x, Bad) +
1
2

k2v ′′(x, Bad)

−λ(ν(x, Bad)− ν(x, Good)),

Lu,αν(x, Good) = (u − αx)ν ′(x, Good) +
1
2

k2ν ′′(x, Good)

+µ(ν(x, Bad)− ν(x, Good)).

The HJB equations for maximizing (2.4) subject to (2.1) are:

J = sup
u∈[0,η]

inf
α∈[0,a]

(Lu,αν(x, Bad) + r(x, Bad, u)) , (2.5)

J = sup
u∈[η,γ]

inf
α∈[0,a]

(Lu,αν(x, Good) + r(x, Good, u)) . (2.6)
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Theorem 2.1. (See Theorem 1 in [4].) Suppose that

(a) the system (2.1) meets Itô’s conditions and the uniform ellipticity condition,

(b) there exists a unique invariant probability measure µu,α(dx, i) for (2.1),

(c) the process (2.1) is exponentially ergodic with respect to a Lyapunov function w.

Then,

(i) There is a unique solution (J, ν) for (2.5)-(2.6), with ν ∈ C2(R× {Bad, Good}).

(ii) The scalar J in (2.5)-(2.6) coincides with the maximal worst payoff

J∗ := sup
u∈[0,γ]

inf
α∈[0,a]

lim inf
T→∞ 1

T
E

u,α
x,i

[∫T

0
[F(u)− D(x, i)]dt

]
.
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Sketch of the proof. (i) The existence of a constant J and a function ν such that

(2.5)-(2.6) hold, is based on the vanishing discount technique. Cf. [6, Theorem

5.5] for further reference.

(ii) An application of Dynkin’s formula for controlled Markov-modulated dif-

fusions to ν (see [7, p.48, Theorem 1.45]) yields:

E
u,αu
x,i ν(x(t), θ(t)) = ν(x, i) + E

u,αu
x,i

(∫ t

0
Lu,αu ν(x(s), θ(s))ds

)
≤ ν(x, i) + Jt − E

u,αu
x,i

(∫ t

0
r(x(s), θ(s), u, αu)ds

)
.

Thus, multiplying by t−1, we have

t−1 Jt(x, i, f , u, αu) ≤ J + t−1h(x, i)− t−1E
u,αu
x,i h(x(t), θ(t)). (2.7)

Now, by (c), we get∣∣∣Eu,αu
x,i [ν(x(t), θ(t))]

∣∣∣ ≤ ||ν||w

[
e−c1tw(x, i) +

d1

c1

(
1 − e−c1t)] . (2.8)
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Let t→∞ in (2.7) and use (2.8) to obtain

J ≥ J(u, αu), ∀u ∈ [0, γ].

Hence, for each u ∈ [0, γ]:

J ≥ inf
α∈[0,α]

J(u, α) implies that J ≥ sup
u∈[0,γ]

inf
α∈[0,a]

J(u, α). (2.9)

To obtain the inverse inequality, observe that by (i), we can assert the

existence of a strategy u∗ ∈ [0, γ] satisfying

J = inf
α∈[0,a]

{r(x, i, u∗, α) + Lu∗,αν(x, i)}, ∀(x, i) ∈ R× {Good, Bad},

≤ r(x, i, u∗, α) + Lu∗,αν(x, i), ∀ α ∈ [0, a], (x, i) ∈ R× {Good, Bad}.

Take an arbitrary α ∈ [0, a], and apply Dynkin’s formula to ν, to get

E
u∗,α
x,i ν(x(t), θ(t)) ≤ ν(x, i) + Jt − E

u∗,α
x,i

(∫ t

0
r(x(s), θ(s), u∗, α)ds

)
.

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos


Home Page

Title Page

Contents

JJ II

J I

Page 18 of 29

Go Back

Full Screen

Close

Quit

Analogously, we can show that J ≤ J(u∗, α), i.e.:

J ≤ inf
α∈[0,a]

J(u∗, α),

and consequently,

J ≤ sup
u∈[0,γ]

inf
α∈[0,a]

J(u, α).

This inequality, together with (2.9) yields that J = J∗.

Work (2.5)-(2.6) by cases (ν ′(x, ·) > 0, ν ′(x, ·) < 0 and ν ′(x∗, ·) = 0) and

apply Theorem 2.1 to see that

u∗(x, Bad) =

 (F ′)−1(−ν ′(x, Bad)) if F ′(η) < −ν ′(x, Bad),

η if F ′(η) ≥ −ν ′(x, Bad);

u∗(x, Good) =

 (F ′)−1(−ν ′(x, Good)) if F ′(γ) < −ν ′(x, Good),

γ if F ′(γ) ≥ −ν ′(x, Good).
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3. Optimal control for a single/parallel machine
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Consider the single/parallel machine system process studied in [8, Chapter 3],

and defined by the controlled diffusion with Markovian switching

dx(t) = (u(t)− α(t))dt + kdW(t), (3.1)

where

• x(t) is the stock level at time t ≥ 0,

• α(t) is the demand rate at time t,

• u(t) is the production rate at time

t, which depends implicitly on

α(x), and the machine capacity

level θ(t).

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
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Assumption 3.1. Let h : R → R and c : R → R be the surplus cost and the

production cost function, respectively. We suppose that h(x) is a nonnegative, convex

function and locally Lipschitz with h(0) = 0; whereas c(u) is a nonnegative function,

c(0) = 0 and c(u) is twice differentiable. In addition, c(u) is either strictly convex or

linear.

The objective is to find a production rate {u(t), t ≥ 0} that minimizes the

long-run expected average cost

J(x, u, i, α) := lim sup
T→∞

1
T

E
u,α
x,i

[∫T

0
[h(x(t)) + c(u)]dt

]
.

Assumption 3.2. The unknown demand rate α(t) is in [0; a] with a < i for all i ∈ E.

http://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos
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An application of Theorem 2.1 yields the robust strategy for the controller:

u∗(x, i) =

 (c ′)−1(−ν ′(x, i)) if c ′(i) ≤ −ν ′(x, i),

i if c ′(i) > −ν ′(x, i).
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A variation of Algorithm 1 with h(x) =

x and c(u) =
√

u.

A variation of Algorithm 2.

Full implementation
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4. Concluding remarks

• We work with a class of controlled diffusion processes with infinite hori-

zon whose dynamics has the form (1.2) along with the transition rule (1.1);

where the drift coefficient b depends on an unknown and possibly non-

observable parameter α. Due to the lack of knowledge of such parameter,

we reformulate the problem as an optimal control model under ambiguity,

or game against nature, or worst case optimal control.

• These models can be applied in:

– the problem of vaccine distribution,

– the optimal allocation of renewable resources,

– the problem of measuring effectiveness of molecular programs.
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• Our work can be located within the field of optimal control models with

Markovian switching under the average payoff criterion. We the impose

general conditions on:

– the sets where the actions and the unknown parameter take values,

– the kind of continuity that the drift and diffusion coefficients satisfy,

– the possibility of considering an unbounded reward rate function.
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Thank you for your attention!
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