Optimal control for diffusion processes with Markovian switching modelled as a differential game against nature Beatris Adriana Escobedo-Trujillo Carmen Geraldi Higuera-Chan

José Daniel López-Barrientos

July the 28th, 2020

STONY BROOK CENTER FOR GAME THEORY

Home Page

Contents

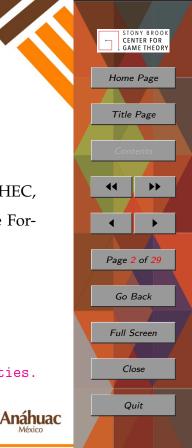
Page 1 of 29

Go Back

Full Screen

Close

Quit

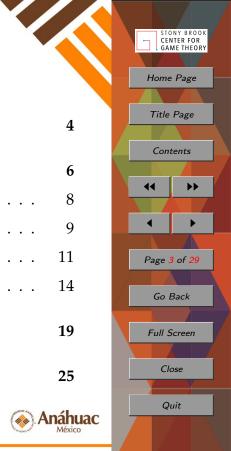

About the speaker

José Daniel López-Barrientos

- BSc in Actuarial Sciences, MSc and PhD in Mathematics
- Researcher at Universidad Anáhuac México; invited researcher at HEC, Montréal; Saint Petersburg State University; Institut Interafricain de Formation en Assurance et en Gestion des Entreprises, Dakar, Senegal.

Facultad de Ciencias Actuariales/Universidad Anáhuac México

- Only Faculty of Actuarial Sciences in Latin America.
- In the top 3 of best universities in Mexico (https://www.topuniversities. com/university-rankings/world-university-rankings/2020)


Contents

Presentation

1

2 Optimal pollution control with average payoff													
	2.1	Dynamics of the "Doomsday pendulum"											
	2.2	Three comparisons											
	2.3	Utility vs. Disutility											
	2.4	Standard Dynamic Programming tools											
3	Opt	imal control for a single/parallel machine											

Concluding remarks 4

1. Presentation

In general, references deal with the case of completely observable stochastic control with a stochastic integral equation of the form

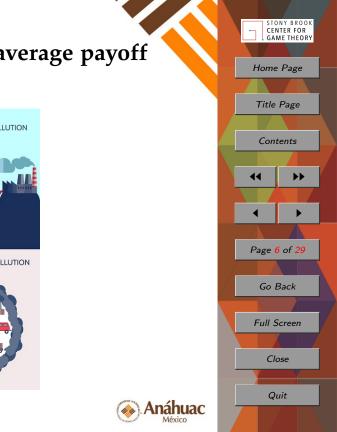
$$x(t) = x_0 + \int_0^t b(x(s), \theta(s), u(s)) \mathrm{d}s + \int_0^t \sigma(x(s), \theta(s)) \mathrm{d}W(s),$$

and a continuous-time Markov chain $\theta(t)$ with finite state space $E = \{1, 2, ..., N\}$, whose transition rule is as follows:

$$\mathbb{P}(\theta(t+\Delta t) = j|\theta(t) = i, (x(s), \theta(s)), s \le t) = q_{ij}\Delta t + o(\Delta t), \ i \ne j;$$
(1.1)

for $t \ge 0$, $\theta(0) = \theta_0$, and $\sum_{j=1}^N q_{ij} = 0$, where $Q = (q_{ij})_{i,j \in E}$ is the *rate matrix* of the process θ .

We work with the particular class of controlled diffusion processes on \mathbb{R}^n with infinite horizon studied in [1,2], whose dynamics has the form


 $dx(t) = b(x(t), \theta(t), u(t), \alpha(t))dt + \sigma(x(t), \theta(t))dW(t); \ x(0) = x_0,$ (1.2)

along with the transition rule (1.1); where *b* and σ are given functions, but the drift coefficient *b* depends on an unknown and possibly non-observable parameter α .

Anáhuac

2. Optimal pollution control with average payoff

Consider the pollution process (cf. [5,7]) defined by the controlled diffusion

$$dx(t) = [u(t) - \alpha(t)x(t)]dt + kdW(t), x(0) = x > 0,$$

where

- *u*(*t*) is the consumption flow at time *t* ≥ 0,
- $0 \le u(t) \le \eta$ in "Bad state",
- η is a consumption restriction imposed by local government,
- $\eta \leq u(t) \leq \gamma$ in "Good state",
- *γ* is a consumption restriction imposed by worldwide protocols.

(2.1)

2.1. Dynamics of the "Doomsday pendulum" $\frac{\mu}{\lambda+\mu} - \frac{\mu}{\lambda+\mu} e^{-(\lambda+\mu)t}$

 $\frac{\mu}{\lambda+\mu} e^{-(\lambda+\mu)t} + \frac{\lambda}{\lambda+\mu} \underbrace{\qquad}_{\text{Good}} \underbrace{\qquad}_{\text{Bad}} \underbrace{\qquad}_{\lambda+\mu} e^{-(\lambda+\mu)t} + \frac{\mu}{\lambda+\mu}$ $\underbrace{\qquad}_{\lambda+\mu} - \frac{\lambda}{\lambda+\mu} e^{-(\lambda+\mu)t}$

We readily know that, for i = Bad, Good, the limiting probabilities are given by:

$$\mathbb{P}^{*}(\text{Bad}) := \lim_{t \to \infty} P_{i,\text{Bad}}(t) = \frac{\mu}{\lambda + \mu'}$$
(2.2)
$$\mathbb{P}^{*}(\text{Good}) := \lim_{t \to \infty} P_{i,\text{Good}}(t) = \frac{\lambda}{\lambda + \mu}.$$
(2.3)

2.2. Three comparisons

1	A	В	C	D	E	F	G	H
	eta =	1	alpha(t) =	1	lambda =			empirio
2	gamma =	2	k=	0.5	mu =		IP(Good)	0.435
3					~		IP(Bad)	0.564
4	t	dW	Pendulum	KM constant benevolent	KM random	KM constant evil	20	
5	0	0.0036055	1	5	5	5	18	
5	0.01	-0.00366	0	4.95817	4.9822767	5.00317	16	
7	0.02	-0.11893	1	=+D6+(SI(C7=	0,\$8\$1,\$8\$2)	-\$D\$1*D6)*C		
в	0.03	-0.132386	0	4,764239	4.8457265	4.8975501		

Euler-Maruyama's method (cf. [3])

A random telegraphic signal

I eta = 1 lambda = 7.5 i it i it it<	1	A	В	С	D	E	F	6	A	В	с	D	E	F	G	н		1	к	
2 pamma 2 k= 0.5 m⊥ 10 [P](Bcd t operating mus 10 [P](Bcd t operating mus	1	eta =	1	alpha(t) =	1	lambda =	7.5	1		1	alpha(t) =			7.5	(RiGood)				(05-010192)	
3 1 600 1 9 0 0.0036055 1 5 5 5 6 0 0.0036055 1 5 5 5 6 0 0.0036055 1 5 5 5 6 0 0.0036055 1 5 5 5 1 0 0.0036055 1 5 5 5 1 0 0.003605 1 5 5 5 1 0 0.003605 0 0.43212 4.00212	2	gamma =	2	k=	0.5	mu =	10	IP(Goc ³												
t dW Pendulum KM benevolent KM constant KM constant KM constant KM constant constant S 5 5 5 5 0 0.0036055 1 5 5 5 1 6 0 4.89212 4.80213 4.89212 4.80213 4.89212 4.80213 4.89212 4.80213 4.89212 4.80213 4.89212 4.80213 4.89212 4.80213 4.89212 4.80213 4.90213 4.90213 4.90213 4.90213 4.90213 4.90214 4.80014 4.80014 4.80014 4.80014 4.80014 4.80014 4.80014 4.80014 4.80014 4.80014 4.80014 4.80014 4.80014 4.80014	3								t	dW	Pendulum	constant	KM random	constant		Ka	waguchi-N	forimoto	with two mo	
L GW Periodium Constant Kwi random Constant					KM		KM	5	0	0.0036055	1	5 Senevolent	5	eva 5	20					
4 benevolent evil 4 <		+	dW	dial	Dendulum	constant	KM random	constant	6	0.01	-0.00366	0	4.95817	4.9822767	5.00317	10				days in
5 0 0.0038055 1 5 5 0 0.442120 4.002120 </td <td></td> <td></td> <td>rendulum</td> <td></td> <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>now</td> <td>\sim</td> <td>A. A. A.</td>				rendulum				7									now	\sim	A. A. A.	
5 0 0.0036055 1 5 5 6 6 0.001 0.003605 1 5 5 8 6 0.001 0.003805 1 5 5 8 6 0.001 0.003805 1 5 5 8 6 0.001 0.003805 1 5 5 8 6 0.001 0.00380 1.00380	4				benevolent		evil	8								1	1			
6 0.01 -0.00366 0 4.95817 4.9822767 5.00317 1 0.08 constant 1 3.480201 1.00387 7 0.02 -0.11893 1 4.8691235 4.922089 4.9585702 10 0.008046 1 3.55720 4.8691245	5	0	0.0036055	1	5	5	5	9								100				
0 0.01 -0.00366 0 4.93617 +9622707 3.00317 1 0 077 087558 4 45077 1 4.9622707 3 4.967268 4 455677 4 45777 4 45777 4 45777 4 45777 4 45777 4 45777 4 45777 4 45777 4 45777 4 45777 4 45777 4 45777 4 45	5					3	5	10								1				
7 0.02 -0.11893 1 4.6691235 4922089 4.9958702 1 0 088 0088544 0 54570 407829 4878644 8 0.03 -0.132286 =+telegraph(7.748,5571,5552) 4.8975501 7 1 0 088 0088544 0 54570 573864 430787 473786 9 0.04 -0.090767 1 4.6912129 4.8099713 4.8672688 1 0 049714 10 04971 473782	6	0.01	-0.00366	0	4.95817	4.9822767	5.00317									1				
8 0.03 -0.132286 =+telegraph(C7,A8,5f51,5f52) 4.8975501 -0.99 0.0455320 0 4532076 4382078 4380788 438078 438078 <td>7</td> <td>0.02</td> <td>0 11902</td> <td>1</td> <td>4 9601225</td> <td>4.022090</td> <td>4 059702</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>has an</td> <td></td> <td>-</td> <td>- m</td>	7	0.02	0 11902	1	4 9601225	4.022090	4 059702									has an		-	- m	
8 0.03 -0.132386 =+telegraph(C7_A8,5F\$1,5F\$2) 4.8975501 5 is 0.1 0167882 0 43723004 43126978 4933997 9 0.04 -0.090767 1 4.6912129 4.8099713 4.8672688 10 0 10 0 10 0 10 0 10 0<	'			÷				14	0.09							2 Lat southt a sure of a		· · · ·		
9 0.04 -0.090767 1 4.6912129 4.8099713 4.8672688 1 16 0.11 0.071022 1 4.510662 4.7891577 4.9728952	8	0.03	-0.132386	=+telegraph(C7,A8,\$F\$1,\$	F\$2)	4.8975501	¥ 15	0.1							-	4	-Ver. 1		
	0	0.04	0.000767	1	4 6012120	4 9000712	4 9673699		0.11	-0.071022	1	4.5110662	4.7891577	4.9728952		0 112.85		00000000000000000000000000000000000000	2558 871 871 871 871 871 871 871 871 871 87	
	9	0.04	-0.090707	1	4.0912129	4.0099715	4.0072000	E 17	0.12			4.5057419	4.8149657	5.0077086				Tir	1000 0 0 0 0 TH	

Empiric corroboration of (2.2)-(2.3)

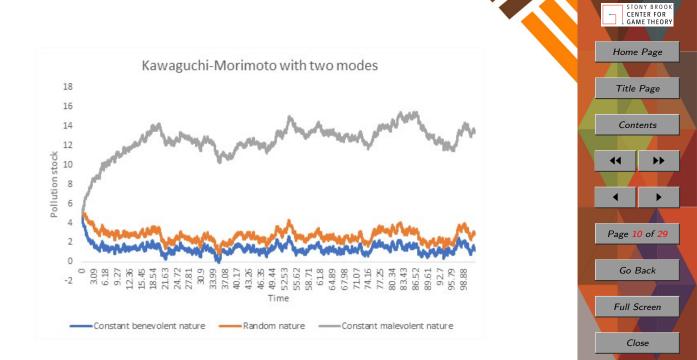
A telegram

STONY BROOK CENTER FOR GAME THEORY

Home Page

Title Page

Contents


Page 9 of 29

Go Back

Full Screen

Close

Quit

Quit

2.3. Utility vs. Disutility

Social welfare: r(x, i, u) := F(u) - D(x, i),

- where $F \in C^2[0; \infty[$ is the *social utility of the consumption u*, and
- $D \in C([0; \infty[\times{Good, Bad}))$ is the social disutility of the pollution stock x.

 $\begin{cases} F' \ge 0, & F'' \le 0, \\ F'(\infty) = F(0) = 0, & F'(0+) = F(\infty) = \infty, \\ D(x,i) \ge 0 & \text{convex and locally Lipschitz for } i \in \{\text{Good}, \text{Bad}\}. \end{cases}$ We look for a consumption policy *u* that **maximizes** the *worst* long-run average

welfare $J(x, i, f, \alpha)$ when the unknown process takes the value $\alpha(t) \in [0; a]$:

$$J(x, i, u, \alpha) := \liminf_{T \to \infty} \frac{1}{T} \mathbb{E}_{x, i}^{u, \alpha} \left[\int_0^T [F(u) - D(x, i)] dt \right].$$
(2.4)

Algorithm 1: Itô's integral

Data: x_0 , Pendulum₀, λ , μ , dt, $T < \infty$, λ , μ , k

Result: The integral inside the expectation operator (2.4)

1 $x \leftarrow x_0$; Pendulum \leftarrow Pendulum₀;

2 *r* ← *F*(*u*(*x*, Pendulum)) − *D*(*x*, Pendulum); *I* ← *r*; *j* ← 0;

³ while $j \leq T$ do

4 Pendulum $\leftarrow \texttt{telegraph}(\texttt{Pendulum}, j, \lambda, \mu); dW \leftarrow N^{-1}(0, dt);$

5
$$x \leftarrow x + (u(x, \text{Pendulum}) - \alpha(x) \cdot x) dt + k \cdot dW;$$

6
$$r \leftarrow F(u(x, \text{Pendulum})) - D(x, \text{Pendulum}); I \leftarrow I + r;$$

7 $j \leftarrow j + \mathrm{d}t;$

8 end

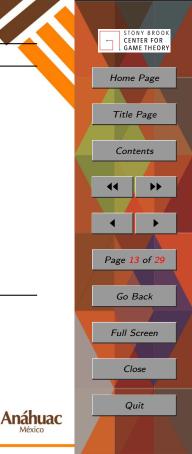
9 $I \leftarrow I \cdot dt;$

10 return I;

Algorithm 2: Monte Carlo algorithm

Data: x_0 , Pendulum₀, λ , μ , dt, $T < \infty$, λ , μ , k, N

Result: An approximate of (2.4), that is, the average of N iterations of


Algorithm 1 divided by *T*

1 MC \leftarrow 0;

5 return $\frac{MC}{T}$;

2 for $i \leftarrow 0$ to N do 3 $| MC \leftarrow \frac{(i-1) \cdot MC + \text{Integral}(x_0, \text{Pendulum}_0, \lambda, \mu, dt, T, \lambda, \mu, k)}{i}$ 4 end

> ▼ : × ✓ fr =+mcl\$F\$5.5C\$5.0.5F\$1.5F\$2.0.01.1000.10)/1000 D G H K Monte Carlo Expectations empiric theoretical 0.1765727 0.1746823 -284.2196 (Good) 0.7399588 one Itô's 0.7228799 0.1486899 -4.086426 integral P(Bad Reward Reward KM KM Reward (constant (constant Pendulum KM random dW constant constant (random benevolent malevolent benevolent evil nature) nature) nature) 0 0.0470604 0 9142136 0.9142136 0.01 0.0870142 -4.048507 5.0035071 5.0416492 5.0485071 -4.041649 0.02 0.0942122 0 5.0105781 5.0816895 5.1005647 -4.010578-4.081689-4.1005650.03 -0.046811 0 4,947067 5,0444031 5,0820588 -3,947067 -4.044403 -4.082059

Standard Dynamic Programming tools 2.4.

The infinitesimal generator of (2.1) for a function $\nu \in C^2(\mathbb{R} \times \{\text{Good}, \text{Bad}\})$ is

$$\mathbb{L}^{u,\alpha}\nu(x, \operatorname{Bad}) = (u - \alpha x)\nu'(x, \operatorname{Bad}) + \frac{1}{2}k^2v''(x, \operatorname{Bad}) - \lambda(\nu(x, \operatorname{Bad}) - \nu(x, \operatorname{Good})),$$
$$\mathbb{L}^{u,\alpha}\nu(x, \operatorname{Good}) = (u - \alpha x)\nu'(x, \operatorname{Good}) + \frac{1}{2}k^2\nu''(x, \operatorname{Good}) + \mu(\nu(x, \operatorname{Bad}) - \nu(x, \operatorname{Good})).$$

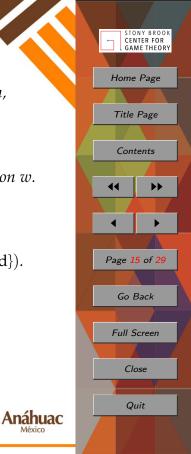
The HJB equations for maximizing (2.4) subject to (2.1) are:

$$J = \sup_{u \in [0,\eta]} \inf_{\alpha \in [0,a]} \left(\mathbb{L}^{u,\alpha} \nu(x, \operatorname{Bad}) + r(x, \operatorname{Bad}, u) \right),$$
(2.5)
$$J = \sup_{u \in [\eta,\gamma]} \inf_{\alpha \in [0,a]} \left(\mathbb{L}^{u,\alpha} \nu(x, \operatorname{Good}) + r(x, \operatorname{Good}, u) \right).$$
(2.6)

México

Theorem 2.1. (See Theorem 1 in [4].) Suppose that

(a) the system (2.1) meets Itô's conditions and the uniform ellipticity condition,


(b) there exists a unique invariant probability measure $\mu_{u,\alpha}(dx, i)$ for (2.1),

(c) the process (2.1) *is exponentially ergodic with respect to a Lyapunov function w*. *Then,*

(i) There is a unique solution (J, v) for (2.5)-(2.6), with $v \in C^2(\mathbb{R} \times \{\text{Bad}, \text{Good}\})$.

(ii) The scalar J in (2.5)-(2.6) coincides with the maximal worst payoff

$$J^* := \sup_{u \in [0,\gamma]} \inf_{\alpha \in [0,a]} \liminf_{T \to \infty} \frac{1}{T} \mathbb{E}_{x,i}^{u,\alpha} \left[\int_0^T [F(u) - D(x,i)] dt \right].$$

Sketch of the proof. (i) The existence of a constant *J* and a function *ν* such that (2.5)-(2.6) hold, is based on the *vanishing discount technique*. Cf. [6, Theorem 5.5] for further reference.

(ii) An application of Dynkin's formula for controlled Markov-modulated diffusions to ν (see [7, p.48, Theorem 1.45]) yields:

$$\begin{split} \mathbb{E}_{x,i}^{u,\alpha_{u}}\nu(x(t),\theta(t)) &= \nu(x,i) + \mathbb{E}_{x,i}^{u,\alpha_{u}}\left(\int_{0}^{t}\mathbb{L}^{u,\alpha_{u}}\nu(x(s),\theta(s))ds\right) \\ &\leq \nu(x,i) + Jt - \mathbb{E}_{x,i}^{u,\alpha_{u}}\left(\int_{0}^{t}r(x(s),\theta(s),u,\alpha_{u})ds\right). \end{split}$$

Thus, multiplying by t^{-1} , we have

$$t^{-1}J_t(x,i,f,u,\alpha_u) \le J + t^{-1}h(x,i) - t^{-1}\mathbb{E}_{x,i}^{u,\alpha_u}h(x(t),\theta(t)).$$
(2.7)

Now, by (c), we get

$$\left| \mathbb{E}_{x,i}^{u,\alpha_{u}}[\nu(x(t),\theta(t))] \right| \leq \|\nu\|_{w} \left[e^{-c_{1}t}w(x,i) + \frac{d_{1}}{c_{1}} \left(1 - e^{-c_{1}t}\right) \right] \cdot \underbrace{2.8}_{\text{Mexico}} \right|_{\text{Mexico}}$$

Let $t \to \infty$ in (2.7) and use (2.8) to obtain

$$J \ge J(u, \alpha_u), \ \forall u \in [0, \gamma]$$

Hence, for each $u \in [0, \gamma]$:

$$J \ge \inf_{\alpha \in [0,\alpha]} J(u,\alpha) \quad \text{implies that} \quad J \ge \sup_{u \in [0,\gamma]} \inf_{\alpha \in [0,a]} J(u,\alpha). \tag{2.9}$$

To obtain the inverse inequality, observe that by (i), we can assert the existence of a strategy $u^* \in [0, \gamma]$ satisfying

$$J = \inf_{\alpha \in [0,a]} \{ r(x, i, u^*, \alpha) + \mathbb{L}^{u^*, \alpha} \nu(x, i) \}, \quad \forall (x, i) \in \mathbb{R} \times \{ \text{Good}, \text{Bad} \},$$

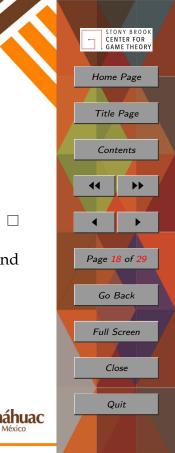
$$\leq r(x, i, u^*, \alpha) + \mathbb{L}^{u^*, \alpha} \nu(x, i), \quad \forall \alpha \in [0, a], \quad (x, i) \in \mathbb{R} \times \{ \text{Good}, \text{Bad} \}.$$

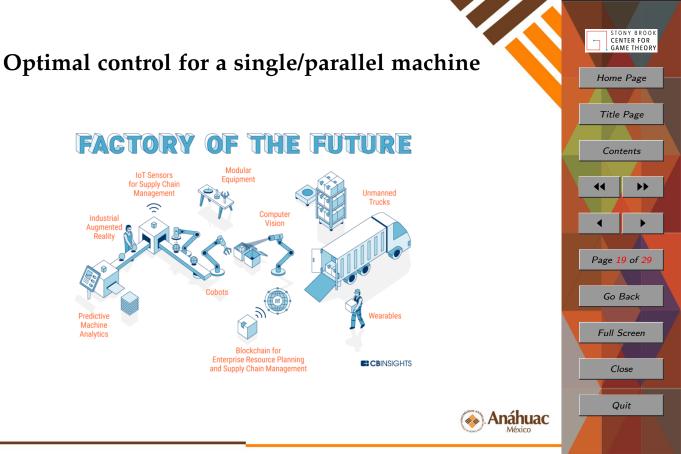
Take an arbitrary $\alpha \in [0, a]$, and apply Dynkin's formula to ν , to get

$$\mathbb{E}_{x,i}^{u^*,\alpha}\nu(x(t),\theta(t)) \leq \nu(x,i) + Jt - \mathbb{E}_{x,i}^{u^*,\alpha} \left(\int_0^t r(x(s),\theta(s),u^*,\alpha) ds \right)$$

Analogously, we can show that $J \leq J(u^*, \alpha)$, *i.e.*:

$$J \leq \inf_{\alpha \in [0,a]} J(u^*, \alpha),$$


and consequently,


$$J \leq \sup_{u \in [0,\gamma]} \inf_{\alpha \in [0,a]} J(u,\alpha).$$

This inequality, together with (2.9) yields that $I = I^*$.

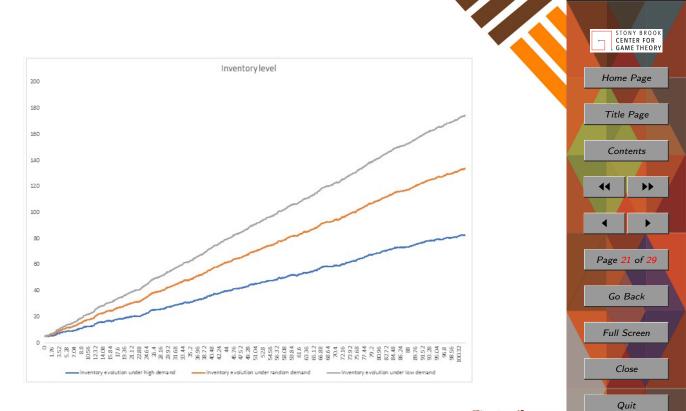
Work (2.5)-(2.6) by cases ($\nu'(x, \cdot) > 0$, $\nu'(x, \cdot) < 0$ and $\nu'(x^*, \cdot) = 0$) and apply Theorem 2.1 to see that

$$u^{*}(x, \operatorname{Bad}) = \begin{cases} (F')^{-1}(-\nu'(x, \operatorname{Bad})) & \text{if } F'(\eta) < -\nu'(x, \operatorname{Bad}), \\ \eta & \text{if } F'(\eta) \ge -\nu'(x, \operatorname{Bad}); \\ u^{*}(x, \operatorname{Good}) &= \begin{cases} (F')^{-1}(-\nu'(x, \operatorname{Good})) & \text{if } F'(\gamma) < -\nu'(x, \operatorname{Good}), \\ \gamma & \text{if } F'(\gamma) \ge -\nu'(x, \operatorname{Good}), \end{cases}$$

3.

Consider the **single/parallel machine system process** studied in [8, Chapter 3], and defined by the controlled diffusion with Markovian switching

 $dx(t) = (u(t) - \alpha(t))dt + kdW(t), \qquad (3.1)$


where

- x(t) is the stock level at time $t \ge 0$,
- $\alpha(t)$ is the demand rate at time *t*,
- *u*(*t*) is the production rate at time *t*, which depends implicitly on *α*(*x*), and the machine capacity level *θ*(*t*).

Assumption 3.1. Let $h : \mathbb{R} \to \mathbb{R}$ and $c : \mathbb{R} \to \mathbb{R}$ be the surplus cost and the production cost function, respectively. We suppose that h(x) is a nonnegative, convex function and locally Lipschitz with h(0) = 0; whereas c(u) is a nonnegative function, c(0) = 0 and c(u) is twice differentiable. In addition, c(u) is either strictly convex or linear.

The objective is to find a production rate $\{u(t), t \ge 0\}$ that minimizes the long-run expected average cost

$$J(x, u, i, \alpha) := \limsup_{T \to \infty} \frac{1}{T} \mathbb{E}_{x, i}^{u, \alpha} \left[\int_0^T [h(x(t)) + c(u)] dt \right].$$

Assumption 3.2. The unknown demand rate $\alpha(t)$ is in [0; a] with a < i for all $i \in E$.

Anáhuac

An application of Theorem 2.1 yields the robust strategy for the controller:

$$u^{*}(x,i) = \begin{cases} (c')^{-1}(-\nu'(x,i)) & \text{if } c'(i) \leq -\nu'(x,i), \\ i & \text{if } c'(i) > -\nu'(x,i). \end{cases}$$

Proyecto - VBAProject 🗙
Manual Industrial X

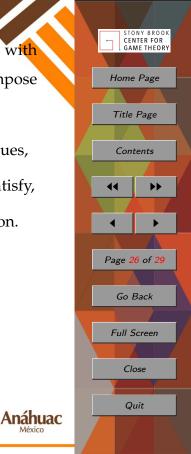
A variation of Algorithm 2.

A variation of Algorithm 1 with h(x) =

x	and	c(u)	=	\sqrt{u} .
---	-----	------	---	--------------

1	A	В	C	D	E	F	G	Н	1
1	k=		empiric	theoretical	lambda =	15	Monte	tations	
2	0.5	IP(2)	0.7477168	0.75	mu =	5	4.8067414	4.8075225	880.7919
3		IP(1)	0.2522832	0.25		one Itô's integral	45.814763	71.165586	91.638263
4	t	dW	Pendulum	inventory under constant high demand	inventory under random demand	inventory under constant low demand	Cost (constant high demand)	Cost (random demand)	Cost (constant low demand)
5	0	0.0435207	1	5	5	5	6	6	6
6	0.01	-0.008002	1	4.9959988	4.9962002	5.0049988	5.9959988	5.9962002	6.0049988
7	0.02	0.0526218	1	5.0223097	5.0236778	5.0403097	6.0223097	6.0236778	6.0403097
8	0.03	0.0889028	1	5.0667611	5.0704047	5.0937611	6.0667611	6.0704047	6.0937611
q	0.04	0 1228252	1	5 1331787	5 1379944	54601787	6 1221787	6 1379944	6 1691787

STONY BROOK CENTER FOR GAME THEORY Home Page Title Page Contents •• Page 24 of 29 Go Back Full Screen Close Quit


Full implementation

4. Concluding remarks

- We work with a class of controlled diffusion processes with infinite horizon whose dynamics has the form (1.2) along with the transition rule (1.1); where the drift coefficient *b* depends on an unknown and possibly nonobservable parameter *α*. Due to the lack of knowledge of such parameter, we reformulate the problem as an optimal control model under ambiguity, or *game against nature*, or *worst case optimal control*.
- These models can be applied in:
 - the problem of vaccine distribution,
 - the optimal allocation of renewable resources,
 - the problem of measuring effectiveness of molecular programs. Anáh

- Our work can be located within the field of optimal control models with Markovian switching under the average payoff criterion. We the impose general conditions on:
 - the sets where the actions and the unknown parameter take values,
 - the kind of continuity that the drift and diffusion coefficients satisfy,
 - the possibility of considering an unbounded reward rate function.

References

- GHOSH, M. K., ARAPOSTATHIS, A., AND MARCUS, S. I. Optimal control of switching diffusions with applications to flexible manufacturing systems. *SIAM J. Control Optim.* 31, 5 (1993), 1183–1204.
- [2] GHOSH, M. K., ARAPOSTATHIS, A., AND MARCUS, S. I. Ergodic control of switching diffusions. SIAM J. Control Optim. 35 (1997), 1962–1988.
- [3] HIGHAM, D. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review 43(3) (2001), 525–546.
- [4] HIGUERA-CHAN, C. G., ESCOBEDO-TRUJILLO, B. A., AND LÓPEZ-BARRIENTOS,J. D. Robust optimal control for diffusion processes with markovian switch-

- ing : the average criterion. *Submitted to Acta Applicandae Mathematicae* (2020). Available here.
- [5] KAWAGUCHI, K., AND MORIMOTO, H. Long-run average welfare in a pollution accumulation model. J. Econom. Dyn. Control 31 (2007), 703–720.
- [6] LÓPEZ-BARRIENTOS, J. D., JASSO-FUENTES, H., AND ESCOBEDO-TRUJILLO, B. A. Discounted robust control for Markov diffusion processes. *TOP* 23 (2015), 53–76. Available here.
- [7] MAO, X., AND YUAN, C. Stochastic Differential Equations with Markovian Switching. World Scientific Publishing Co., UK, 2006.
- [8] SETHI, S., ZHANG, H., AND ZHANG, Q. Average-cost control of stochastic manufacturing systems. Springer, New York, 2005.

STONY BROO CENTER FOR

GAME THEORY

Home Page

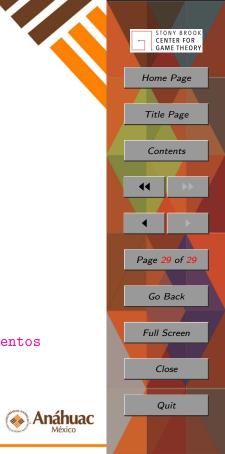
Title Page

Contents

Page 28 of 29

Go Back

Thank you for your attention!


Contact information

Facultad de Ciencias Actuariales, Universidad Anáhuac México. Av. Universidad Anáhuac 46, Lomas Anáhuac, CP52786 Naucalpan de Juárez, México.

Tel. 01-52-55-56-27-0210 ext. 8506

daniel.lopez@anahuac.mx

https://www.researchgate.net/profile/Jose_Daniel_Lopez-Barrientos

