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This paper presents a novel methodology to estimate the frequency shift in chirp signals with SNRs as 
low as −17 dB through the use of an adaptive array of Duffing oscillators. The system used here is an 
array of five Duffing oscillators with each oscillator’s response enhanced through a correlation with the 
reference signal. As a final result, a time-frequency depiction is provided by the Duffing array for further 
analysis of chirp signals.
Using computer simulated experiments, it is found that the analysis of chirp signals with low SNR by 
means of the Duffing oscillator shows a markedly better performance than the conventional methods 
of time-frequency analysis. To this end, the results obtained from the proposed Duffing method are 
compared against some recent techniques in time-frequency analysis.
Furthermore, to strengthen the proposed representation, Monte Carlo simulation is used.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Typically, detection and estimation of time-varying signals is 
done through time-frequency (TF) methodologies like those of 
short-time Fourier Transform, discrete wavelet transform and other 
more modern techniques like the Wigner and the Choi–Williams 
distributions [1]. However, all these TF techniques exhibit difficul-
ties when the time-varying signals under study have low SNRs, as 
in the case of chirp signals immersed in noise.

In recent years, detection of extraordinarily low SNR signals 
with a constant frequency has been reported using chaotic oscil-
lators [2–5] and specifically the Duffing oscillator [6–11]. The use 
of an array of Duffing oscillators has also permitted the detection 
of nonlinear time-varying frequencies under high levels of noise – 
with better results than those obtained from conventional TF tech-
niques – working with chirp signals in environments with very 
low SNRs [12]. This array approach presented a drawback due to 
its imprecise way of measuring changes in frequency.

In contrast, traditional and modern TF analysis techniques 
when used to measure signals whose frequency changes over 
time including the spectrogram, the continuous wavelet transform 
[13–15] and the Wigner distribution [16–18] have given very ac-
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curate results in high SNR scenarios, but they are all seriously 
impacted when the SNR is too low.

Here, and due to an improvement in measuring and detecting 
the transitions between the periodic and chaotic states of an ar-
ray of five, self-adjusting Duffing oscillators, this paper proposes a 
novel method for the analysis of chirp signals with very low SNR in 
the TF domain as an advantaged choice to the Choi–Williams dis-
tribution [1], and the Multiform Tiltable Exponential Distribution 
(MTED) [18].

Furthermore, the experimental comparison allowed noticing 
that there exist two inner limitations related to the Duffing oscil-
lator: i) Despite the published claims that the chaotic oscillator is 
immune to noise [6,9,11,14,19–23], it has a noise threshold under 
which the oscillator can work as a good detector; and ii) the array 
system oscillator also has a measuring threshold for the frequency 
variation ratio present in the chirp signal.

In what follows, Section 2 provides a short description of the 
Duffing oscillator chaotic behavior whereas Section 3 describes 
how such behavior is used to detect chirp signals in high levels 
of noise and how to obtain the corresponding parameter measure-
ments in the most precise form. Section 4 describes the proposed 
adaptive system that allows for the measurement of the instan-
taneous frequency variation of a highly dynamic single compo-
nent chirp signal within a large frequency range. Finally, Section 5
shows the experimental comparison, based on the relative MSE, 
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among the TF representations using the Choi–Williams distribu-
tion, the MTED and the proposed Duffing Adaptive System.

2. Duffing oscillator operation

The general Duffing oscillator can be modeled as the following 
non-linear differential equation [24]:

ÿ + 2ζ ẏ + μ ẏ3 + αy + γ y3 = 0 (1)

where y represents displacement, ζ is the damping ratio, μ is the 
non-linear damping coefficient, α is the linear stiffness and γ is 
the non-linear stiffness.

Analysis of the Duffing system under no external force using the 
homogeneous equation (1) gives 3 equilibrium points, one equi-
librium point at (yeq, ẏeq) = (0, 0), and two equilibrium points 
(yeq, ẏeq) = (±

√
− α

γ , 0) under two different conditions [24]:

i) One condition occurs when the stiffness coefficients, both lin-
ear and non-linear, have the same sign, that is αγ > 0.

ii) The other condition occurs when both stiffness coefficients 
have different signs, that is, αγ < 0.

Such analysis determines that the Duffing oscillator has a chaotic 
behavior if and only if all three equilibrium points are present. 
Further analysis shows that under all the above conditions, 
the Jacobian evaluated at the corresponding stability points re-
sulted in the non-linear damping element becoming null, that is, 
μ ẏ3

eq = 0.
Thus, working under such conditions, and when we apply an 

exciting force composed by the sum of two sinusoidal parts in the 
presence of additive noise n(t), equation (1) becomes

ÿ + 2ζ ẏ − αy + γ y3

= Fr cos(ωt) + A cos
[
(ω + �ω)t + ϕ

] + n(t) (2)

where Fr is the amplitude of a given single reference signal with 
the frequency ω chosen to be equal to the initial frequency of an 
applied input signal (amplitude A, arbitrary phase ϕ and a fre-
quency drift from the reference of �ω). The additive noise has 
standard deviation σ .

The operating principle of the oscillator is based on the 
frequency difference between the two involved signals in the 
equation: the proper reference signal of the Duffing Oscillator 
(Fr cos(ωt)) and the introduced external signal (A cos[(ω+�ω)t +
ϕ]).

A complete mathematical demonstration of such transitions is 
developed in [8] where it is also shown that the amplitude of the 
oscillator’s response is given by

F (t) =
√

F 2
r + 2Fr cos(�ωt + ϕ) + A2. (3)

When F (t) is smaller than a given but fixed Fo the oscillator 
exhibits a chaotic state, and when F (t) is bigger than Fo the os-
cillator presents its periodic state. Thus, Fo establishes a threshold 
for transitions between chaos and periodicity [23]. Furthermore, 
the frequency difference �ω can be estimated when calculating 
the time at which those transitions occur by means of

�T = 2π

�ω
. (4)

It has also been shown in [20] that any possible noise added to 
the system, does not affect such transitions and only affects the 
trajectory of the response, re-enforcing in this manner the chaotic 
intermittence behavior.
From equation (4), the period at which the transitions occur 
is inversely proportional to �ω, which allows a precise frequency 
measurement of the input signal even in the presence of noise. 
Therefore, measuring the period �T is one of the most important 
steps along the process.

It should be noted that the existing force for this case only con-
tains a single reference signal, thus limiting this development to 
single component signal applications.

With the purpose of detecting a signal with any frequency vari-
ation without necessarily modifying any parameter in equation (1)
when ω varies, it is convenient to apply a variable transformation 
[10] to the system equation, obtaining the state-space system de-
scribed by

{
ẋ = ωy
ẏ = ω

(−2ζ y + αx − γ x3 + Fr cos(ωt)
) (5)

It is worth noticing that the state equations (5) have the angular 
frequency ω as a factor and, therefore, the amplitude in the oscil-
lator response increases as ω increases [4,10,21,23] and this may 
cause a variation in the threshold between the two possible states. 
This, in turn, may cause the oscillator to fall off the chaotic inter-
mittence, making it impossible to estimate any dynamic frequency 
changes in the incoming signal. This has to be taken into consider-
ation when attempting to detect chirp signals.

In other words, frequency measurements work well for station-
ary frequency signals. However, our motivation is to verify that the 
Duffing oscillator can permit the measurement of time dependent 
frequency signals, specifically chirp signals.

3. Chirp detection with the Duffing oscillator

This section is intended to give the reader an idea of how it 
is possible to detect chirp signals using the Duffing oscillator, the 
main contribution of this research. We also explain how the system 
generates a time-frequency representation (TFR). It is important to 
note here that the proposed system has the ability to detect lin-
ear and nonlinear frequency variations and that these variations 
represent accelerations and decelerations or even changes in accel-
eration which, in fact, are more consistent with the Doppler Effect 
in real situations.

The Duffing oscillator working under a reference chirp signal 
whose frequency variation in time, represented by ω̇, is described 
by

ÿ + 2ζ ẏ − αy + γ y3

= Fr cos
(
ωt + ω̇t2) + A cos

[
(ω + �ω)t + (ω̇ + �ω̇)t2 + ϕ

]
+ n(t). (6)

To work with this type of signal it was assumed that the Duff-
ing oscillator is able to accurately detect the frequency of signals 
with linear phase variations operating under chaotic conditions as 
discussed under equation (5). Thus, it is possible to conceive a 
new time approach where the chirp signal is divided into small 
time windows short enough to assume that, within each window, 
the frequency can be considered constant. Furthermore, the se-
lection of the time window has to ensure that the variation of 
frequency does not take the oscillator out of the intermittence con-
dition.

To calculate the accepted frequency variation present in a win-
dowed linear chirp signal described by

X(t) =
{

cos(ωt + ω̇t2) for t < | T
2 |

0 otherwise
(7)
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Fig. 1. Oscillator response with chirp reference signal and a frequency variation ratio ω′ equal to 0.0001 rad/s2.

Fig. 2. Array of Duffing oscillators.
where T is the width of a symmetric window in the time domain, 
let us start with rewriting equation (7) as

cos
(
ωt + kt2) = cos(ω0t) cos

(
kt2) − sin(ω0t) sin

(
kt2) (8)

where k is the corresponding rate for ω̇.
If kt2 is small, we get

cos
(
ωt + kt2) = cos(ω0t) − kt2 sin(ω0t). (9)

Using Taylor’s residue theorem for an expected error of 1%, the 
value for k can be easily calculated, obtaining kt2 = 0.14 rad for 
t < | T

2 |.
Fig. 1 displays the time system response where it is possible 

to observe the transitions between the chaotic and the periodic 
states. One drawback is the effect of having two implicit variables 
in time, namely the difference in speed and acceleration of the 
chirp signal at which those transitions occur, thus preventing the 
measurement of �ω and consequently any changes in accelera-
tion in the signal separately. Furthermore, as it was pointed out in 
[12], any dynamic changes in frequency cannot exceed 0.04 rad/sec 
since it is difficult to perceive the intermittent chaos as the transi-
tions occur very rapidly. Hence, it is highly recommended to keep 
measuring signals where �ω < |0.04|.

Thus, the proposed system would use rectangular time win-
dows in a similar way as in the short-time Fourier transform (STFT) 
but, in contrast, it does not apply the Fourier transform to each 
window, but rather each time window is analyzed using an array 
of Duffing oscillators for as many different frequency references as 
those that are meant to be detected. Fig. 2 depicts the actual time 
windowing applied to an incoming signal to a set of Duffing oscil-
lators.

Specifically, each one of the windows dividing the signal is 
introduced to an array of Duffing oscillators which detects the 
frequency in the window or, in other words, the instantaneous fre-
quency in the period of time defined by that window.

Fig. 3 illustrates how the frequency measuring procedure is per-
formed for a given initial signal X1(t) – which is the result of 
Fig. 3. Array of oscillators analyzing the windowed signal X1(t).

multiplying the incoming signal by the very first rectangular win-
dow and later simultaneously introduced to each oscillator OS j
in the array. Each oscillator generates transitions between chaos 
and periodicity as it was expected. Since the oscillators are lo-
cated at different reference frequencies, each one of them presents 
a different response, but it must be consistent with the detected 
frequency by the other oscillators.

To implement such proposed technique, an array of Duffing os-
cillators is set up where each element OSn of the array gives an 
estimation of the frequency that is being analyzed for a given time 
window. The array gives a set of different frequency estimates and 
at the end an average frequency ωa is obtained. This procedure 
is performed for every one of the subsequent time windows that 
divide the original signal.

3.1. Measurement of �ω

To properly describe the method to detect chirp signals being 
proposed here, let us assume that there are only 5 Duffing oscil-
lators (OS j, j = 1, . . . , 5) in the array and that the incoming linear 
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Fig. 4. Response of an array with five Duffing oscillators; spacing among oscillators 
0.1 rad/s within the same time window.

chirp signal varies in frequency from 1 rad/s to 1.4 rad/s. Further, 
and just for the sake of a clear explanation, let us consider a noise-
less incoming signal.

For a given time window that is presented to the array, Equa-
tion (4) indicates that in order to calculate �ω, it is necessary to 
measure the time interval �t at which each oscillator gets in and 
out of its corresponding chaotic state. Fig. 4 shows that each oscil-
lator generates a signal response with a different period �t . Thus, 
there are 5 measurements, which are close to each other, repre-
senting different points of reference and permitting us to obtain a 
very accurate estimate of the actual frequency.

To start measuring �t , there are some practical considerations 
based on Fig. 4.

First of all, it is clearly seen that the periodic state on the 
Duffing oscillator response presents a bigger amplitude than the 
chaotic state. Thus, it is easy to define an amplitude threshold to 
properly distinguish the time separation between the points that 
reach that threshold. Therefore, the first step is to detect the points 
where the signal has an amplitude above such threshold followed 
by finding the time region where there exist periodic states. The 
second step is to identify which points belong either to the same 
periodic state or to a different one. Once we have identified the 
points belonging to different periods, the distance �t between 
them needs to be measured. However, within the response of the 
particular oscillator under study, we will find several transitions 
and very likely the measurements will give different �t but, still 
very close to each other. Therefore, all those values are averaged 
producing the final �T for that specific oscillator.

Secondly, from Fig. 4 it can also be easily seen that the OS4 
oscillator is the one with the fewer number of transitions and, in 
agreement with equation (3), that oscillator is at the non-chaotic 
state. Therefore OS4 is the one that contains the reference clos-
est to the instantaneous frequency of the incoming signal and it 
should be taken as an adequate estimate of such frequency.

Thirdly, to obtain the most accurate measurement of �T , the 
oscillator with the greatest number of transitions should be taken. 
Fig. 4 shows that such oscillator is the farthest one from the in-
stantaneous frequency. Precaution should be taken when the num-
ber of transitions is so large that it would make it impossible 
to distinguish one transition from another which, in turn, would 
make the calculation of �ω very difficult.

Finally after finding the most precise �T , then �ω can be 
calculated giving the best estimate of the frequency variation be-
tween the reference signal and the incoming signal. Despite having 
a precise measurement of �ω, such value does not say anything 
about how the real frequency is changing in time in the sense of 
not knowing if it increases or decreases; it only says how far away 
the real frequency from the reference frequency is. Thus, at the 
moment of calculating the signal frequency, we must consider the 
reference frequency in the oscillator, aiming to either add or sub-
tract �ω as appropriate.

To overcome this difficulty, it would be sufficient to observe 
where the other oscillators are located with respect to the one that 
gave the proper estimate of the incoming signal. In the case of 
Fig. 4, the oscillators OS1, OS2 and OS3 are located at a smaller 
frequency than OS4 and therefore we must add the �ω to their 
reference frequencies. Correspondingly, for OS5 the �ω must be 
subtracted because it is located at a higher frequency than the OS4 
oscillator.

In this way, the proposed array gives us the required informa-
tion about �ω because it is possible to identify if it is negative or 
positive. That is an important reason for applying a Duffing oscil-
lator array.

To conclude, once the frequency is calculated for each oscillator, 
we can now get the average frequency for all responses. This will 
be the result generated by the oscillators array and hence would 
be the most precise estimate of the frequency for the particular 
time window being analyzed.

The implementation algorithm is as follows:

i) The incoming chirp signal immersed in noise is previously 
divided into n time windows depending on both the total du-
ration of the whole signal and the condition that the variation 
of frequency does not exceed the limit of being considered 
constant for the specific desired precision.

ii) Give a first estimate for the incoming frequency signal and 
set each of the Duffing local reference frequencies, adjusted 
within a close variation.

iii) Select the jth oscillator response and identify points above a 
given amplitude threshold that distinguishes chaos from peri-
odicity.

iv) Account for the i-number of transitions present in the re-
sponse.

v) Measure �ti between all different periodic states.
vi) Calculate the average �T .

vii) Perform the same procedure for all Duffing oscillators in the 
array.

viii) Identify the oscillator with the least amount of transitions and 
use its �T to calculate the better frequency estimate for this 
observation window.

ix) Decide whether �ω implies if the frequency is increasing or 
decreasing.

x) Provide the actual frequency estimate for this window.

The full algorithm is summarized in Fig. 5.

3.2. Signal detection enhancement

Measuring �t in the Duffing oscillator response is a key pro-
cess in the system’s performance since it is at this point that the 
detection of the frequency signal takes place. Therefore, it is neces-
sary to estimate �t with the least possible error to achieve greater 
accuracy in the measurement.

In this process, it is necessary to identify or highlight any of 
the two states – periodic or chaotic state – in the oscillators’ re-
sponse to measure the period at which the transitions occur. In the 
presence of noise, it is observed that the difference in amplitude 
between the periodic and chaotic oscillator becomes less distinct, 
as seen for all OS j, j = 1, 2, 3, 4, 5, in Fig. 6.

For this reason, it is critical to study different methodolo-
gies that highlight some of both states to improve measurements 
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Fig. 5. �T measurement and estimation of the actual window frequency.

and thus, introducing in the system a process to enhance chaos-
periodicity transitions.

Fig. 7 shows how the whole process is modified for a better 
frequency estimate from the Duffing oscillator array.

In Fig. 7, y(t) is the Duffing oscillator response and s(t) is the 
new signal that is used to measure �T .

The signal enhancement block is responsible for improving the 
oscillator response in order to identify the transitions between the 
states with better accuracy. The studied methods for this purpose 
were:

a) Melnikov Function [8,21].
b) Lyapunov Exponent [11,22].
c) Correlation [25,26].
d) High Order Cumulants [27–29].
e) Squared Response [12,20] of the Duffing Oscillator.
Fig. 6. Response of an array of 5 oscillators with −10 dB of SNR, spacing 0.1 rad/s 
among oscillators within the same time window.

Fig. 8 shows the results of applying all these methodologies to 
enhance the signal.

The enhancement process is described in [30] and concluded 
that the correlation method permits the improvement of frequency 
measurement up to a limit of −28.5 dB of SNR with good accuracy. 
This fact is confirmed directly in Fig. 8 and, therefore, such method 
was selected and used by the entire system.

In scenarios with very high levels of noise, a problem may 
persist when measuring the different �T j which consists in that 
sometimes there is a periodic state that fails to overcome the pre-
viously selected threshold amplitude. For the example in Fig. 6, the 
problem occurs within the OS5 oscillator at the particular 5th tran-
sition. One can see that this periodic state has a lower amplitude 
than the others.

To solve this situation, the method for the �T j estimation per-
forms a measurement of distances between each of them and 
compares with the average of the entire signal to later make an 
automatic assignment of the points that are needed.

4. Adaptive system

An inherent difficulty in the array of Duffing oscillators is that 
in order to use a chirp signal as a reference, it would be neces-
sary to know beforehand the signal to be measured and to adjust 
the frequency and acceleration parameters accordingly or, at least 
to know if the frequency rate of the incoming signal is of second 
order or higher. Hence, the system is rendered useless when mea-
suring a signal that could have unknown variations in frequency.

The Duffing array provides a larger frequency range than a sin-
gle Duffing oscillator because the whole chirp signal is broken in a 
set of time windows. However, although the use of an array of os-
cillators produces very good frequency estimation of the signal, it 
has limitations for detecting the instantaneous frequency in a sig-
nal whose frequency range is broad. This could happen because of 
the possible existence of very high dynamics involved in the given 
chirp signal. One way of widening the frequency range is to have 
a very large array of oscillators.

The described procedure in the previous section shows that the 
arrangement of 5 oscillators works very well because it is easy to 
Fig. 7. Frequency estimation enhancement from the Duffing oscillator response.
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precisely measure �T but, when the array is large, the oscillators 
that are located too far from the actual instantaneous frequency 
could not perform an accurate measurement of frequency due to 
the sensitivity of working in chaotic intermittence.

To avoid the use of a large array of oscillators, we also pro-
pose a practical solution that consists of generating a system 
array able to recursively follow the instantaneous frequency de-
tected in a chirp signal. This means that the array adjusts it-
self to the changes in frequency of the incoming signal inde-
pendently of those changes increasing or decreasing the fre-
quency.
The proposed operating principle is based on the following: af-
ter obtaining a first estimate of the instantaneous frequency (using 
a small window analyzed by the 5 oscillators as described above) 
then, for the next window that is going to be analyzed, the local 
reference frequency for each of the oscillators is adjusted according 
to that specific value. This procedure repeats itself for the whole 
duration of the incoming signal and so ensures that the array of 
oscillators is always close to the instantaneous frequency of the 
chirp signal.

This method is always going to need a fixed number of os-
cillators regardless of the frequency range. In addition, because 
Fig. 8. Comparison of signal enhancement methodologies: a) Melnikov function, b) Lyapunov exponent, c) Correlation, d) 4th order Cumulant, and e) Squared signal.

Fig. 9. Adaptive system (the time-frequency representation is generated after all the windows have been analyzed). (For interpretation of the colors in this figure, the reader 
is referred to the web version of this article.)
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the system array adjusts the frequency according to the frequency 
found at each iteration, the system becomes adaptive.

As a direct result of the system being adaptive, the main ad-
vantage of the proposed method is that the signal frequency to be 
analyzed does not need to be either a linear or a quadratic chirp 
signal but it may have any general chirp rate of the form

y(t) = A · cos
(
ωt + ω̇t2 + ω̈t3 + · · · + ω(n)tn) (10)

which implies that the signal may contain accelerations, deceler-
ations or any variation that produces a change in its phase over 
time.

Fig. 9 is a schematic view which allows for a better understand-
ing of how the entire system operates for such single chirp signals.

4.1. Time-frequency representation

This section describes how the time-frequency representation is 
obtained.

Because �ω is calculated for each time window in which the 
unknown chirp signal was divided and because that particular 
window corresponds to a specific time then, the system array al-
ready gives one point in the TF representation. Since the system is 
adaptive, the next time window will have its corresponding time 
and �ω which constitute again another point in the TF represen-
tation, and so on.

4.2. Adaptive Duffing array methodology

The proposed adaptive system array methodology is imple-
mented as follows:

i. The chirp signal immersed in high levels of noise is presented 
for detection.

ii. Calculate window size in the time domain for a given expected 
error.

iii. Partition signal into corresponding n windows.
iv. nth window processing:

a. set local frequency references for all OS j, j = 1, . . . , 5 ad-
justed within a close variation of the most likely frequency 
estimate;

b. the windowed chirp signal is presented to the 5 Duffing 
oscillator array;

c. Signal Enhancement to OS j for j = 1, . . . , 5;
d. Measure �ti for all i-transitions at each OS j;
e. �Tn average calculation;
f. Estimate the instantaneous �ωn;
g. Save coordinate values for the Time vs. Frequency plot.

v. Update frequency reference for the nth +1 window.
vi. Recursive analysis for all windows.

vii. Generate TF representation.

The full algorithm is described in the flow chart presented in 
Fig. 10.

One interesting issue is that of evaluating the computational ef-
fort when using the proposed technique. Firstly, it is important to 
note that the program that implements the Adaptive Duffing Sys-
tem algorithm in fact converges and therefore it has an asymptotic 
behavior which, in turn, is given by the previously described main 
algorithm (Fig. 10). Then, it is easy to establish an upper bound 
by the use of the maximum rule [31] to the whole algorithm. 
Because there are two loops in the main algorithm, such upper 
bound belongs to the O (n2). This places our adaptive system in 
the same order of difficulty as that of the general Cohen’s class 
[32], particularly the Choi–Williams and the Multiform Tiltable Ex-
ponential Distribution when they compute their kernel with O (n2)
Fig. 10. Adaptive system algorithm.

operations [33,34]. This relative computational cost will be experi-
mentally proven in the next section.

5. Results

To verify that indeed the system operation is able to follow the 
frequency of a chirp input signal, simulations were performed in 
the absence and in the presence of noise, using a linear chirp and 
a quadratic chirp.

The frequencies used for the simulations were selected consid-
ering the frequency ranges at which some radar systems run. This 
was done to show the performance of the system with frequen-
cies that can be found in real applications such as weather radar, 
air surveillance radar, tracking and ballistic missiles, among others 
[35,36].

5.1. Linear chirp

In this section all simulations were performed using linear chirp 
signals with additive noise n(t) at different σ levels in agreement 
with the following equation:

y(t) = 0.5 cos
[(

6 · 109)t + (
45 · 1013)t2] + σ · n(t). (11)
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Fig. 11. Instantaneous frequency calculated with the Duffing system at 0 dB of SNR.

Fig. 12. Choi–Williams distribution; Linear chirp with 0 dB of SNR. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)
This signal has a frequency range that varies approximately from 
950 MHz to 1.25 GHz.

For comparison purposes, the same chirp signal was analyzed 
by time-frequency methods that are commonly used with these 
types of signals, such as the Choi–Williams distribution and the 
MTED. These previous techniques performed well in our experi-
ments at 0 dB of SNR but at higher noise levels, also worsened by 
the Doppler Effect, they all were severely affected and, therefore, 
all comparison experiments were done using this specific SNR.

5.1.1. Duffing system
The response of the Duffing oscillator system at 0 dB of SNR is 

shown in Fig. 11. It shows that although variations in the instanta-
neous frequency could be observed, the overall results indicate that 
the frequency estimation performed by the system is quite accu-
rate and therefore a good TF representation. It is worth mentioning 
that during simulations for higher levels of noise, the response of 
the system gives, in general, reliable results.

5.1.2. Choi–Williams distribution (CWD)
The result for the CWD at 0 dB of SNR is shown in Fig. 12. 

Despite being able to estimate the instantaneous frequency, this 
method is affected by some components not desired in its TF 
representation (this effect is more noticeable when the noise 
is increased). It can be easily seen that, this method shows 
lower time-frequency resolution than the Duffing system (see 
Fig. 11).

5.1.3. Multiform tiltable exponential distribution (MTED)
This method, Fig. 13, detects the instantaneous frequency in 

a better way than the CWD, but continues to have lower time-
frequency resolution than the Duffing system. The kernel applied 
for this kind of signal was the parallel strip form [18] as it gave 
the best experimental results.

5.2. Quadratic chirp

In this section, all simulations were performed with quadratic 
chirp signals in the presence of noise described by

y(t) = 0.5 cos
[(

5 · 109)t + (
15 · 1014)t2 − (

98 · 1019)t3]
+ σ · n(t). (12)
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Fig. 13. MTED; Linear chirp with 0 dB of SNR. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 14. Instantaneous frequency calculated with the Duffing system at 0 dB of SNR.

Fig. 15. Choi–Williams distribution; Quadratic chirp with 0 dB of SNR. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)
This signal covers a frequency range from 800 MHz up to 918 MHz 
approximately. Again, for comparison purposes, simulations from 
the proposed Duffing system are presented against the results from 
the same TF methods used at 0 dB of SNR.
5.2.1. Duffing system
Fig. 14 shows the instantaneous frequency estimation at 0 dB 

of SNR. Experiments were also performed for lower SNR indicating 
a great capability for detecting signals with a higher level of noise 
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Fig. 16. MTED; Quadratic chirp with 0 dB of SNR. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 17. Superimposed plots for Monte Carlo simulation (50 plots) and average estimated instantaneous frequency at −17 dB. (For interpretation of the references to color in 
this figure, the reader is referred to the web version of this article.)
as shown later in Fig. 18. It should be noted here that an overlap-
ping heuristic window was used to obtain better time-frequency 
resolution.

5.2.2. Choi–Williams distribution
The first comparison is done against the CWD at 0 dB of SNR 

with the result presented in Fig. 15. The presence of cross terms 
generates errors in the estimation of the frequency which oc-
curs mainly at the point of maximum curvature of the graph. 
For this case, like in the linear chirp case, a lower time-frequency 
resolution than the Duffing system is readily observed. Fur-
ther, the CWD is affected by interference terms when the same 
frequency component appears at different periods of time [1,37].

5.2.3. Multiform tiltable exponential distribution (MTED)
Due to the lack of a kernel designed specifically for quadratic 

“chirp” signals, the cross form kernel [18] was used since such ker-
nel presented the best results for the different simulations that 
Table 1
Relative errors among all different TF analysis techniques.

Method Linear chirp error Quadratic chirp error

Duffing 0.1771% 0.1866%
Choi–Williams 0.4533% 0.8143%
MTED 0.2844% 0.7835%

were performed during the experiments. In the absence of noise, 
the MTED’s performance is good since it does not present interfer-
ence terms, and therefore the MTED can identify the fine frequency 
variation over time. Nevertheless, at 0 dB of SNR (Fig. 16) we can 
see that the time-frequency resolution decays and some undesired 
elements begin to appear. This method detects the instantaneous 
frequency in a better way than the CWD but continues to have a 
lower time-frequency resolution than the Duffing system.

Finally, Table 1 shows the relative errors for each of the com-
pared methods: Duffing, Choi–Williams distribution and MTED. Ab-
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Fig. 18. Instantaneous % error and average error (constant line) = 0.3065%.
Table 2
Relative running time using the comparison TF techniques.

Method Linear chirp [sec] Quadratic chirp [sec]

Duffing 156 165
Choi–Williams 84 102
MTED 89 112

solute errors are calculated against the analytical expression for 
the frequency variations and the corresponding experimental re-
sult for each and all simulated TF methods and the MSE was used. 
It can be easily seen that the least relative errors for both linear 
and non-linear frequency variations, are those presented by the 
Duffing methodology.

Moreover, Table 2 shows the computational timing for each of 
the numerical tests performed with an Intel® Core i5 based com-
puter, with 4 MB of RAM and running MATLAB® R2011a with 212

chirp signal data length.

5.3. Monte Carlo simulation

The Duffing oscillator achieves excellent results in the presence 
of noise and it has been observed that it could measure a sig-
nal down to −28.5 dB SNR for the case of a constant frequency 
signal. During the experiments, simulations using chirp signals at 
different levels of noise were performed and good results were 
obtained. Hence, it was expected that the Duffing system would 
achieve good results with high levels of noise.

To demonstrate the noise limits at which our system is able to 
run, the Monte Carlo method was applied. Simulations were ex-
clusively performed using the quadratic chirp signal described by 
equation (11) since, by having higher frequency variation than the 
linear chirp case, the frequency estimation will exhibit higher er-
ror. However, the results are equally valid for linear chirp signals 
even considering worst SNR scenarios.

The quadratic chirp signal elapsed within 942.4 ns, with a mini-
mum frequency of 795.8 MHz, a maximum frequency of 917.6 MHz 
and a sampling frequency of 15.92 GHz (100 Grad/sec) giving 
15,000 samples. To make the frequency estimate, 50 simulations 
were done for two different SNRs, one at 0 dB and the other at 
−17 dB. The limiting level of detection was reached at −17 dB of 
SNR since at these frequency changes, the system does not give an 
accurate measurement of all the frequencies involved.
Monte Carlo simulations for −17 dB SNR are shown in Fig. 17
where all 50 runs are superimposed as well as the corresponding 
final average estimated instantaneous frequency.

From Fig. 18, it can be seen that the average error is 0.3065% 
which is extraordinarily good considering that for such a quite low 
SNR all studied TFRs fail to measure such frequencies.

Monte Carlo results are similar for 0 dB SNR with an average 
error as low as 0.1796% which can be considered good as was al-
ready discussed.

6. Conclusions

This work achieves a measurement methodology for chirp sig-
nals by means of an adaptive Duffing oscillator array. We have 
proposed a method which takes time windows from the signal of 
interest and uses the chaotic properties of the Duffing oscillator 
instead of time-frequency representations. The principal advantage 
of this technique is that chirp signals can be analyzed for a fre-
quency that varies with time and at low levels of SNR. A collateral 
important contribution is the enhancement of the Duffing oscilla-
tor response achieved with the correlation between its reference 
signal and the response itself. We have demonstrated that the sys-
tem is able to detect linear and quadratic frequency shifts and in 
general it could meet any kind of nonlinear frequency variation. 
The Duffing oscillator has favorable characteristics for the analysis 
of weak signals, which presents a clear advantage over the tested 
traditional time-frequency techniques.

As future work, there is the need to compare the proposed 
method against most modern TF techniques such as the Com-
pact Kernel distribution and adaptive time-frequency distribution 
[38]. Further, much extra work still needs to be done to test the 
performance of the Adaptive Duffing Array under multi-signaling 
conditions.
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