Abstract
The COVID-19 pandemic that the world has been suffering for 3 years has generated major impacts worldwide, both in public health systems and in the private insurance industry. The high costs of care derived from cases with complications have likewise generated a great impact on the private insurance industry. In the case of Mexico, the mortality rates observed are among the first places, in addition to generating a great impact on private insurance. This work deals with the measurement of the impact of catastrophic expenses derived from COVID-19 in an insurance company; using a set of machine learning models, the key variables in the estimation of patients with potential catastrophic expenses were determined. The results show that the estimated classification model has a positive performance in addition to allowing the identification of the main risk factors of the insured as well as their potentially catastrophic impact on insurance companies.© 2024 Springer Nature